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ABSTRACT

Financial markets are inherently complex and influenced by a variety of factors, making it 
challenging to predict trends and detect key events. Traditional models often struggle to integrate 
both structured, or numerical, and unstructured, or textual, data; additionally, they fail to capture 
temporal dependencies or the dynamic relationships between financial entities. To address this, the 
multidimensional integrated model for financial text mining and value analysis (MI-FinText), was 
proposed. MI-FinText integrated multi-task learning, temporal graph convolutional networks and 
dynamic knowledge graph construction. MI-FinText simultaneously performed sentiment analysis, 
event detection, and value prediction by learning shared representations across tasks and modeling 
time-dependent relationships between financial events. MI-FinText continuously updated a dynamic 
knowledge graph to reflect the evolving financial landscape, enabling real-time insights.
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INTRODUCTION

Financial markets are inherently complex and volatile (Shavandi & Khedmati, 2022), requiring 
comprehensive analysis of both structured data, such as stock prices, trading volumes; and unstructured 
data, such as news articles, earnings reports, and social media posts (Krasnyuk et al., 2022). 
Financial markets are influenced by numerous factors (Thakkar & Chaudhari, 2021b), therefore 
extracting meaningful insights from vast amounts of data has become a critical task for analysts and 
decision-makers (Ashtiani & Raahemi, 2023). Traditional methods of financial analysis primarily 
focus on quantitative metrics, often overlooking the qualitative factors that are crucial for a holistic 
market understanding (Bello, 2023). Financial text mining, which applies natural language processing 
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(NLP) and machine learning (ML) techniques to analyze unstructured textual data, has emerged as 
a vital tool for identifying patterns, trends, and predicting future market behaviors (Dash, 2022).

Despite rapid growth in financial text mining research, several challenges remain. First, the 
integration of structured and unstructured data has proven to be difficult (Nahar et al., 2024), as 
these data types have different formats, scales, and temporal dynamics (Tarka & Jędrych, 2020). 
Second, financial data is inherently volatile; market trends and asset prices are often influenced 
by sudden shifts in public opinion or events, and this high volatility makes it difficult to develop 
accurate predictive models. Financial text mining and value analysis (MI-FinText) addresses this 
challenge by incorporating temporal modeling techniques, such as temporal graph convolutional 
networks (T-GCNs), which capture the evolving nature of financial data and account for sudden 
market changes. Third, temporal dependencies in financial data, such as market trends and price 
fluctuations, are often ignored or inadequately modeled in traditional approaches (Zhang, 2024). To 
handle these dependencies, MI-FinText uses T-GCN, allowing the model to better understand long-term 
trends and market shifts over time. Fourth, while existing models excel at individual tasks, such as 
sentiment analysis or event detection (Abdullah & Ahmet, 2022), they often lack a comprehensive 
framework that integrates multiple tasks; this limits their ability to provide a holistic understanding 
of financial markets (Lu et al., 2023). MI-FinText overcomes this limitation by utilizing multi-task 
learning (MTL), anabaenas sentiment analysis, event detection, and value prediction, while also 
sharing relevant features across tasks. Finally, dynamic relationships between financial entities—such 
as companies, products and markets—and events need to be continuously captured in real time to 
maintain the relevance of insights (Allioui & Mourdi, 2023). MI-FinText incorporates a dynamic 
knowledge graph that updates continuously, reflecting mergers, acquisitions, and market fluctuations.

To address these challenges, this study proposed a novel solution: the multidimensional integrated 
model for MI-FinText. The approach integrated several advanced components, including MTL (Zhang 
& Yang, 2021), temporal modeling, and dynamic knowledge graph construction (Liang et al., 2024). 
By leveraging MTL, the model simultaneously performs sentiment analysis, event detection, and 
value prediction tasks, thereby facilitating the extraction of shared features across tasks (Zhang et 
al., 2025). Temporal patterns are modeled using T-GCN, allowing the model to capture the evolving 
nature of financial data and predict trends more accurately (Zhao et al., 2019). In addition, a dynamic 
knowledge graph was constructed that continuously updated financial relationships, such as mergers, 
acquisitions, or market changes. This provided a rich representation of financial entities and their 
interdependencies.

The main technical components of the proposed approach were threefold. First, the sentiment 
analysis component used a pre-trained financial language model (FinBERT), a pre-trained transformer 
model fine-tuned for financial data, to classify the sentiment of financial documents (Fang et al., 2023; 
Liu et al., 2021). Second, the event detection component applied deep learning models to identify 
significant financial events from text, such as market changes or corporate actions (DeMatteo et al., 
2024; Li et al., 2025). Third, the value prediction module employed a regression-based approach to 
predict the future values of financial assets, based on historical data and textual content (Qi et al., 
2023). Finally, the knowledge graph construction component built and updated a dynamic graph 
of financial entities and relationships, enabling the model to leverage both historical context and 
real-time data to improve decision-making.

In summary, MI-FinText addressed several key challenges in financial data analysis, providing 
an integrated framework that captured temporal dependencies, modeled dynamic relationships, and 
performed multiple tasks simultaneously. By combining state-of-the-art techniques such as MTL, 
T-GCN, and dynamic knowledge graphs, the model significantly improved prediction accuracy, 
event detection, and sentiment analysis. This work contributes to the growing field of financial text 
mining and offers a more comprehensive solution for understanding and predicting financial markets.
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RELATED WORK

In recent years, the combination of text mining, NLP, and ML techniques has greatly enhanced 
the ability to analyze and predict financial markets (Abinaya & Kumar, 2024; Dimlo et al., 2024). A 
substantial body of research has explored various methods to extract insights from financial text and 
integrate them with structured data (Gupta et al., 2020). This section reviews the existing literature 
on financial text mining, the challenges faced by current approaches, and introduces method proposed 
in this study, MI-FinText, highlighting its contributions and how it improves upon existing methods.

The application of NLP in financial markets has seen rapid development, particularly in sentiment 
analysis, event detection, and market prediction tasks (Xiao et al., 2024). Early works primarily focused 
on analyzing textual data to detect sentiments or opinions from financial news, stock reports, and 
social media posts (Nyakurukwa & Seetharam, 2023). One of the first notable efforts was the creation 
of a financial sentiment lexicon, which was used to measure sentiment in financial news and reports 
(Frankel et al., 2022). More recently, FinBERT set a new standard for financial sentiment analysis 
by achieving remarkable results in classifying sentiment in financial reports, such as earnings calls 
and financial news.

On the event detection side, significant progress has been made in identifying key financial 
events, such as mergers, acquisitions, and market fluctuations (El Ghoul et al., 2022). Traditional 
approaches relied on rule-based systems to identify keywords and phrases associated with specific 
financial events (Dogra, 2021; Zhou et al., 2024). These methods, however, have been limited by their 
inability to capture complex, context-dependent events. More recent work has employed deep learning 
models like Bidirectional Long Short-Term Memory (BiLSTM) and transformer-based models to 
automatically detect events in financial text (Li et al., 2023), thereby allowing for more robust and 
dynamic event extraction. These models can learn contextual information and better generalize across 
different types of financial events (Feng & Sinchai, 2024).

Value prediction models have focused on predicting stock prices and market trends, based 
on historical financial data and textual information (Li et al., 2024; Rouf et al., 2021). Traditional 
regression models and ML techniques such as support vector machines (SVM) and random forests 
were used to predict financial asset values (Sadorsky, 2021), relying heavily on numerical data such as 
historical prices and trading volumes (Kumbure et al., 2022). Recent advancements in neural networks, 
particularly long short-term memory (LSTM) and Gated Recurrent Unit (GRU) architectures, have 
been shown to better capture temporal dependencies in market data, leading to improvements in 
forecasting accuracy (Thakkar & Chaudhari, 2021a). These models, however, often struggle with 
integrating both textual and numerical data in a unified framework.

Despite the progress made in financial text mining, several challenges remain regarding fully 
capturing the complexity of financial markets. One major challenge is the integration of structured 
and unstructured data. Traditional models typically treat these two data types separately, resulting 
in suboptimal performance. Textual data, such as financial reports or news articles, contains rich, 
qualitative information; numerical data, such as stock prices and trading volumes, provides quantitative 
insights. Most existing methods fail to fully integrate these data types in a way that leverages their 
complementary strengths, and while some recent works have attempted to fuse these data sources, 
they often rely on feature engineering or manual alignment of text and numerical data, which limits 
scalability and the ability to handle large datasets.

Another challenge is the temporal modeling of financial data. Financial events and stock prices 
are often influenced by time-dependent factors, yet many models fail to capture the complex temporal 
dependencies between these events. Standard ML models such as SVM or random forests typically 
ignore the sequential nature of financial data, whereas deep learning models like LSTM have made 
significant strides in capturing temporal dependencies, but they still struggle with high-dimensional, 
real-time data and require substantial computational resources.
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A third challenge is the dynamic nature of financial relationships. Financial markets are constantly 
evolving, and the relationships between entities—such as companies, products, or markets—change 
over time, due to new events or market shifts. Current knowledge graphs often fail to keep up with 
these changes, as they are typically built from static data. Maintaining an up-to-date graph that reflects 
the evolving relationships between financial entities is crucial for real-time analysis, but few models 
address this issue adequately.

The proposed MI-FinText model addressed several key limitations in the current literature by 
offering a unified framework that integrates MTL, temporal modeling, and dynamic knowledge graph 
construction. Unlike existing models that treat text and numerical data separately, MI-FinText fused 
both types of data to enhance prediction accuracy and event detection. By using MTL, the model 
simultaneously performed sentiment analysis, event detection, and value prediction, allowing it to 
learn shared representations across tasks and improve generalization.

The use of T-GCN in MI-FinText provided a novel approach to modeling temporal dependencies 
in financial data. T-GCN allowed the model to capture the evolving relationships between financial 
entities over time, improving the prediction of market trends and the identification of significant events 
(Almayyan & Al Ghannam, 2024). This temporal modeling was particularly important for capturing the 
long-term dependencies between financial events, which are often overlooked by traditional models.

Furthermore, MI-FinText incorporated a dynamic knowledge graph, which continuously updated 
financial relationships based on new data. This approach ensured that the model could reflect real-time 
changes in the market, such as mergers, acquisitions, or shifts in stock performance. The dynamic 
nature of the knowledge graph made MI-FinText particularly suitable for real-time financial analysis 
and decision-making, setting it apart from static knowledge graph models used in prior work.

Overall, MI-FinText showed potential to significantly advance the state of financial text mining 
by integrating cutting-edge techniques for MTL, temporal modeling, and dynamic knowledge graph 
construction, offering a more comprehensive solution for predicting financial trends, detecting events, 
and analyzing market behavior. Unlike existing methods, MI-FinText effectively bridged the gap 
between structured and unstructured data, providing a unified framework that improved prediction 
accuracy and provided deeper insights into financial markets.

METHODOLOGY

In this next section, the detailed methodology behind the multidimensional integrated model 
for MI-FinText is presented (see Figure 1). This model integrated several advanced components, 
including financial text mining, sentiment analysis, knowledge graph construction, temporal data 
modeling, and MTL, to address the complexities of analyzing and predicting financial value, from 
both unstructured and structured data. Each component is described in detail below, along with the 
associated mathematical formulations and explanations.

Figure 1. Model diagram of the multidimensional integrated model for financial text mining and value analysis (MI-FinText)

Financial text mining was the first critical step in the MI-FinText model. The goal of financial 
text mining is to extract meaningful information from unstructured documents, such as 10-K filings, 
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earnings call transcripts, and news articles. This information is used to identify key entities, detect 
significant events, and form the foundation for downstream tasks such as sentiment analysis and 
event prediction.

The raw financial documents underwent several preprocessing steps to convert the unstructured 
text into a usable format. These steps are outlined below.

1. 	 Tokenization: Tokenization split the raw text into smaller units (tokens), such as words, phrases, 
or sentences. The tokenization process was mathematically represented as:

​T  =  Tokenize​(D)​​

where ​T​ was the set of tokens and ​D​ was the raw document.

2. 	 Lemmatization: Lemmatization reduced words to their base or root form, for example, 
transforming “running” into “run.” The lemmatization operation was represented as:

​​T​ lem​​  =  Lemmatize ​(T)​​

where ​​T​ lem​​​ was the lemmatized set of tokens.

3. 	 Stop-word removal: Common words (such as “the,” “and,” “is”) that do not add significant 
meaning to the document were removed during preprocessing.

Named Entity Recognition
Once the text was preprocessed, named entity recognition (NER) was used to identify and extract 

relevant entities from the document. These entities could be companies, financial terms, products, 
and other important identifiers in the financial context. The NER process was mathematically 
represented by:

​E  =  NER ​(​T​ lem​​)​​

where ​E​ was the set of entities extracted from the tokenized and lemmatized text ​​T​ lem​​​.
After extracting entities, event extraction was performed, which involved identifying significant 

financial events such as mergers, acquisitions, and market fluctuations. Each event was associated 
with a financial impact ​​Δ​ f​​,​ for example, a change in stock price. The event extraction process could 
be formulated as:

​​e​ i​​  =  ExtractEvent ​(E, T)​​

where ​​e​ i​​​ represented an event, ​E​ was the set of extracted entities, and ​T​ was the original document. 
Additionally, the event was associated with a time ​t​ and its corresponding financial impact ​​Δ​ f​​​, 
represented as:

​​e​ i​​  =  Event ​(​e​ entity​​, t, ​Δ​ f​​)​​

where ​​e​ entity​​​ referred to the involved financial entity, ​t​ was the timestamp of the event, and ​​Δ​ f​​​ was 
the financial impact, such as a percentage change in stock price.
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Noise Handling in Financial Data
Financial data, especially from unstructured sources such as social media and news articles, 

often contains noise in the form of irrelevant content, inconsistencies, and misleading information. 
To address this, MI-FinText integrated several techniques during preprocessing and model training 
to minimize the impact of noise, thereby ensuring reliable performance.

Data preprocessing noise reduction started with preprocessing steps like tokenization, 
lemmatization, and stop-word removal. To further reduce noise from unstructured sources, irrelevant 
content such as spam and non-financial posts was filtered, using keyword-based filtering and entity 
recognition. Let ​D​ represent the raw financial dataset, and after preprocessing, the filtered dataset ​​
D​​ '​​ was given by:

​​D​​ '​  =  filter ​(D, keywords, entities)​​

where ​keywords​ and ​entities​ referred to terms and financial entities used to exclude irrelevant 
content.

MI-FinText employed regularization techniques, such as dropout and L2 regularization to make 
the model more robust to noise. L2 Regularization, also known as weight decay, is a technique used 
to prevent overfitting in neural networks by penalizing large weights in the loss function. Dropout 
was expressed as:

​​h​​ ​(​​l​)​​​  =  Dropout​(​h​​ ​(l)​​; p)​​

where ​​h​​ ​(​​l​)​​​​ was the hidden layer output at layer ​l​, and pp was the probability of dropping out 
neurons. This helped prevent overfitting by forcing the model to rely on a broader set of features. L2 
regularization was used to penalize large weights and was represented as:

​​ℒ​ L2​​  =  λ​∑ i=1​ 
n  ​  ​ ​w​ i​ 

2​​

where ​​w​ i​​​ were the model weights and ​λ​ was the regularization strength.
To reduce the noise from high-dimensional data, principal component analysis (PCA) and latent 

dirichlet allocation (LDA) were used. PCA reduced dimensionality by finding the principal components ​
P​ that explained the maximum variance:

​P  =  arg ​max​ 
P
​  ​ ​​P​​ T​ ​X​​ T​ XP _ ∥  P ​∥​​ 2​ ​​

where ​X​ was the data matrix, and ​P​ were the principal components.
By combining these methods, MI-FinText effectively handled noisy financial data, improving 

model reliability in real-world applications.

Sentiment Analysis
Sentiment analysis was an essential task in the MI-FinText model, as it helped identify the 

sentiment associated with financial events, whether positive, negative, or neutral. Understanding 
sentiment is crucial for predicting market trends and forecasting stock prices.

For sentiment classification, FinBERT was used. The sentiment classification of a financial 
document TT was represented as:

​​S  =  FinBERT​(​​T​)​​​​
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where ​S​ was the predicted sentiment label—positive, negative, or neutral—for the document ​T​.
To further enhance sentiment analysis, a weighted sentiment score was introduced that adjusted the 

sentiment, based on the financial impact of the associated event. The sentiment score was computed as:

​​S​ score​​  =  αS + β ​Δ​ f​​​

where ​α​ and ​β​ were hyperparameters that controlled the weight of sentiment and financial impact, ​
S​ was the sentiment label, and ​​​​ Äf​​​ represented the financial impact associated with the sentiment.

This weighted sentiment score helped quantify how the sentiment expressed in a document was 
related to the actual financial impact of the described events.

Knowledge Graph Construction
The dynamic construction of the knowledge graph was a crucial feature in MI-FinText, allowing 

the model to adapt to rapidly changing financial markets. This knowledge graph not only captured 
relationships between financial entities—such as companies, sectors, and stock prices—but also 
continuously updated in real-time to reflect the latest market events. This dynamic updating mechanism 
was essential for addressing the volatility inherent in financial markets, where relationships between 
entities can shift dramatically due to events like mergers, acquisitions, or market fluctuations.

Regarding real-time event integration, one of the key features of MI-FinText’s dynamic knowledge 
graph was its ability to directly link financial events to market movements. When a financial event 
occurred, such as a company merger, the knowledge graph updated to reflect the new relationship 
between the involved companies, allowing the model to track how this event might influence stock 
prices or sector performance. For instance, when a merger between two companies was announced, 
the knowledge graph updated to show a “merger” relationship between these two companies, which 
helped the model understand the potential market impact.

This was mathematically represented as:

​​G​(​​t + 1​)​​  =  G​(​​t​)​​ ∪ ÄG​(​​t​)​​​​

where ​​G​(​​t​)​​​​ represented the knowledge graph at time ​t​, and ​​ΔG​(​​t​)​​​​ was the newly detected event, 
such as a merger or acquisition, that updated the graph.

Similarly, during stock market fluctuations, such as sudden crashes or bull runs, the knowledge 
graph dynamically updated to capture how various stocks and financial entities were influenced by 
these events, ensuring that the model adapted to current market conditions.

Event-Driven Updates
The process of updating the knowledge graph involved several steps, detailed below.

1. 	 Event detection: Financial documents, including news articles, earnings reports, and market 
analysis, were processed to detect significant financial events, such as mergers, acquisitions, 
and market shocks. These events triggered the update mechanism in the knowledge graph.

2. 	 Relationship extraction: Once an event was detected, relationships between the involved entities 
were extracted and represented as graph edges. For example, in the case of a merger, a “merger” 
relationship was formed between the two companies. The mathematical formulation of this 
relationship was expressed as:

​​r​(​​ ​v​ i​​, ​v​ j​​​)​​  =  merger​(​​ ​v​ i​​, ​v​ j​​​)​​​​
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where ​​r​(​​ ​v​ i​​, ​v​ j​​​)​​​​ represented the relationship between entities ​​v​ i​​​ and ​​v​ j​​​, and the function merger 
​​​(​​ ​v​ i​​, ​v​ j​​​)​​​​ defined the specific relationship between the two companies involved in the merger.

3. 	 Temporal updates: Relationships were then updated with time-dependent data, such as the 
changes in stock prices or market sentiment before and after the event. The temporal evolution 
of the relationships was modeled as:

​​r​(​​ ​v​ i​​, ​v​ j​​, t​)​​  =  f​(​​r​(​​ ​v​ i​​, ​v​ j​​​)​​, X​(​​t​)​​​)​​​​

where ​​r​(​​ ​v​ i​​, ​v​ j​​, t​)​​​​ represented the relationship between entities ​​v​ i​​​ and ​​v​ j​​​ at time ​t​, and ​​X​(​​t​)​​​​ represented 
the time-dependent financial data, such as stock prices or market sentiment.

CONTRIBUTION TO MARKET PREDICTIONS

The continuous updates to the knowledge graph significantly contributed to MI-FinText’s ability 
to make accurate predictions in real time. The key contributions are outlined below.

1. 	 Real-time adaptation: As new events unfolded, the knowledge graph updated to reflect these 
changes. This enabled the model to make timely predictions based on the latest available market 
information. The real-time update of the knowledge graph was expressed as:

​​​​ ̂  y ​​ t​​  =  Predict​(​​G​(​​t​)​​, X​(​​t​)​​​)​​​​

where ​​​ ̂  y ​​ t​​​ was the prediction at time ​t​, and ​​X​(​​t​)​​​​ was the real-time market data.

2. 	 Event-driven market predictions: By linking financial events directly to market movements, 
the model predicted how specific events might influence stock prices or sectors. For example, 
when a merger occurred, the model updated its predictions based on historical data and market 
responses to similar events:

​​​​ ̂  y ​​ t​​  =  f​(​​G​(​​t + 1​)​​, X​(​​t​)​​​)​​​​

3. 	 Improved forecasting: The real-time, dynamic nature of the knowledge graph allowed MI-FinText 
to forecast future market trends more accurately by continuously incorporating up-to-date financial 
relationships and market sentiment.

Temporal Data Modeling
Financial data is inherently temporal, meaning that the relationships between events and market 

conditions evolve over time. To model the temporal aspect, T-GCN was utilized, which combined 
the power of graph convolutional networks (GCNs) with temporal data.

Temporal Graph Representation
In temporal modeling, the knowledge graph is updated to reflect the changing state of financial 

entities over time. At each time ​t​, the temporal graph ​​G​(​​t​)​​​​ consisted of entities and time-dependent 
relationships. The T-GCN model updated the node embeddings ​​H​(​​t​)​​​​ over time by incorporating both 
spatial and temporal features:
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​​​H​​ ​(​​t+1​)​​​  =  σ​(​​​ ̂  A ​ ​H​​ ​(​​t​)​​​ ​W​​ ​(​​t​)​​​ + X​(​​t​)​​​)​​​​

where ​​H​​ ​(​​t​)​​​​ represented the node embeddings at time ​t​, ​​ ̂  A ​​ was the normalized adjacency matrix 
representing the relationships between financial entities, ​​W​​ ​(​​t​)​​​​ was the weight matrix, and ​​X​(​​t​)​​​​ 
represented the time-dependent financial features, such as stock prices, trading volume, and sentiment 
scores.

By using T-GCN, the model simultaneously captured both the spatial (entity relationships) and 
temporal (financial data evolution) dependencies, improving the accuracy and interpretability of 
financial predictions.

Temporal Message Passing
T-GCN updated the node embeddings by passing messages through the graph, considering both 

the structure of the graph and the temporal data. The message-passing operation was formulated as:

​​​H​ i​ 
​(​​t+1​)​​​  =  σ​(​​​∑ j∈𝒩​(​​i​)​​​​  ​ ​

​A​ ij​​ _ ​d​ j​​
 ​ ​H​ j​ 

​(​​t​)​​​ ​W​​ ​(​​t​)​​​ + ​X​ i​​​(​​t​)​​​)​​​​

where ​​H​ i​ 
​(​​t​)​​​​ represented the feature vector for node ii at time ​t​, ​​A​ ij​​​ was the adjacency matrix, ​​𝒩​(​​

i​)​​​​ represented the set of neighbors of node ​i​, ​​d​ j​​​ was the degree of node ​j​, and ​​​X​ i​​​(​​t​)​​​​ was the temporal 
feature for node ​i​ at time ​t​. The activation function ​σ​ introduced non-linearity to the model.

This message-passing mechanism enabled the model to propagate information across the graph, 
while considering both the structure of the graph and the temporal evolution of financial data, thereby 
capturing the dynamic interdependencies in the financial system.

Contribution of T-GCN to Model Performance
The integration of T-GCN into the MI-FinText framework significantly enhanced the model’s 

ability to understand and predict financial data. By capturing both the temporal and spatial 
dependencies, T-GCN allowed the model to better understand how financial entities influence each 
other over time and how these influences evolve.

For instance, in stock market prediction, T-GCN was able to learn the long-term dependencies 
between financial events, such as mergers and market crises, and the reactions of different financial 
entities, such as stock prices and sector indices—this is crucial for forecasting trends and making 
more informed predictions. The temporal graph convolution mechanism also allowed the model to 
adapt dynamically to the rapidly changing nature of financial markets.

MTL Framework
The MI-FinText model employed MTL, a framework that allowed the model to learn multiple 

tasks simultaneously, while sharing representations across tasks. MTL improved model generalization 
and performance by leveraging common features learned from different tasks. The core tasks in 
MI-FinText are outlined below.

1. 	 Sentiment analysis: Classifying the sentiment of financial documents.
2. 	 Event detection: Identifying key financial events such as mergers, acquisitions, or market 

fluctuations.
3. 	 Value prediction: Predicting future values of financial assets such as stock prices.
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Loss Function for MTL
The overall loss function for MTL was the weighted sum of the individual losses for each task. 

This was defined as:

​L  =  ​λ​ 1​​ ​L​ sentiment​​ + ​λ​ 2​​ ​L​ event​​ + ​λ​ 3​​ ​L​ prediction​​​

where ​​L​ sentiment​​​ was the loss for sentiment classification, ​​L​ event​​​ was the loss for event detection, ​​
L​ prediction​​​ was the loss for value prediction, and ​​λ​ 1​​, ​λ​ 2​​, ​λ​ 3​​​ were hyperparameters controlling the relative 
importance of each task.

Shared Representations
MTL allowed for the learning of shared representations in the lower layers of the network, while 

task-specific layers were used to fine-tune the model for each individual task. This architecture enabled 
the model to leverage shared knowledge, improving performance across all tasks.

OVERALL FRAMEWORK

The multidimensional integrated model for MI-FinText was designed to address complex 
financial analysis tasks by integrating multiple components: financial text mining, sentiment analysis, 
knowledge graph construction, temporal data modeling, and MTL. The goal of MI-FinText was to 
process and analyze a variety of financial data, including textual data from documents such as 10-K 
filings, earnings reports, and news articles, as well as structured numerical data such as stock prices 
and trading volumes.

The overall framework of MI-FinText was structured as outlined below.

1. 	 Data input and preprocessing: The first step involved collecting and preprocessing data from 
multiple sources. These included financial documents, financial news, social media, and market 
data. The preprocessing pipeline involved tokenization, lemmatization, NER and removing 
stop-words. Both textual and numerical data were cleaned, formatted, and prepared for analysis.

2. 	 Financial text mining: The financial documents were analyzed to extract key entities (companies, 
financial terms, events), and significant financial events (mergers, acquisitions, earnings reports). 
This was achieved using advanced techniques such as NER and event extraction models.

3. 	 Sentiment analysis: The sentiment of the extracted documents was classified using FinBERT, a 
pre-trained model specifically fine-tuned for financial texts. Sentiment analysis helped understand 
the tone of the document—whether positive, negative, or neutral—which was essential for 
understanding market sentiment.

4. 	 Knowledge graph construction: A dynamic financial knowledge graph (FinDKG) was constructed 
to represent the relationships between entities such as companies, financial events, and market 
trends. The graph was updated dynamically with new financial documents and real-time market 
data, enabling the model to adapt to evolving financial conditions.

5. 	 Temporal data modeling: The temporal aspect of financial data was captured using T-GCN, 
which allowed the model to process time-dependent relationships between financial events, 
stock prices, and trading volumes. This component helped capture the long-term and short-term 
dependencies in financial markets.

6. 	 MTL: The model performed multiple tasks simultaneously using a MTL framework. These 
tasks included sentiment analysis, event detection, and value prediction. The model shared 
representations across tasks, improving performance while avoiding overfitting.
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The MI-FinText framework was designed to provide a unified approach to analyzing and predicting 
financial trends, enabling the model to process both unstructured financial text and structured financial 
data. By integrating advanced techniques such as T-GCN for temporal modeling and MTL for joint 
task optimization, the framework ensured accurate, adaptable, and real-time financial analysis.

DATASETS

In this study, several datasets were utilized that were integral to the proposed multidimensional 
integrated model for MI-FinText. These datasets were selected to cover a range of essential tasks, 
such as financial text mining, sentiment analysis, event extraction, knowledge graph construction, 
and temporal data modeling. Specifically, the datasets used include the SEC Edgar Annual Financial 
Filings–021, financial dynamic knowledge graph (FinDKG), and financial document classification 
dataset.

The SEC Edgar Annual Financial Filings–2021 dataset consists of 10-K filings from publicly 
listed companies, providing comprehensive annual reports on their financial health. These filings 
contain critical sections such as the company’s business summary, management discussion, financial 
statements, and additional sections that detail the company’s performance and strategy. The inclusion 
of such detailed corporate reports makes this dataset invaluable for tasks involving sentiment analysis, 
event extraction, and financial analysis. The rich content allows for training models to recognize and 
classify various financial events and sentiments expressed by management, while also facilitating 
the construction of a knowledge graph that can map the relationships between companies, markets, 
and events. Given its comprehensive nature, this dataset served as the primary resource for training 
the financial text analysis component of MI-FinText. The data was divided into a training set (80%), 
a validation set (10%), and a test set (10%), to ensure robust model evaluation and generalization.

The FinDKG dataset served as a resource for building dynamic knowledge graphs in the financial 
domain, as it captures both qualitative and quantitative financial indicators through an extensive 
collection of global financial news, collected using the wayback machine. This dataset was especially 
useful for constructing and enhancing the FinDKG component of the MI-FinText model, which allowed 
for the mapping of complex relationships between financial entities, such as companies, stock prices, 
and market trends. The dynamic nature of this dataset supported the real-time learning component 
of the model, ensuring it was able to adapt to the rapidly changing financial environment. Like the 
SEC dataset, the data was split into subsets of training (80%), validation (10%), and test (10%), to 
provide a comprehensive evaluation across all tasks.

The financial document classification dataset is a collection of diverse financial documents, 
including letters, forms, emails, reports, invoices, presentations, and more. This dataset is particularly 
valuable for training MTL models capable of performing document classification, sentiment analysis, 
and entity extraction. While this dataset does not specifically focus on financial event extraction or 
temporal data modeling, it provides essential support for training models to recognize and categorize 
various types of financial documents, improving the overall accuracy of financial text mining systems. 
As with the other datasets, it was divided into subsets of training (80%), validation (10%), and test 
(10%).

The datasets used in this research, collectively, ensured the comprehensive coverage of key tasks 
in financial text mining and analysis. The training sets provided ample data for model development, 
while the validation sets helped in tuning hyperparameters and adjusting model configurations. The 
test sets served to evaluate the final model’s performance on unseen data, ensuring that it generalized 
well to real-world applications. This structured approach to data partitioning ensured the robustness 
and reliability of the MI-FinText model, facilitating its application to a wide range of financial text 
mining tasks.
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EVALUATION METRICS

This section will discuss the evaluation metrics used to assess the performance of the 
multidimensional integrated model for MI-FinText. Since the model integrated multiple tasks—
including sentiment analysis, event detection, value prediction, and knowledge graph construction—
different sets of metrics were used, tailored to each specific task. These metrics were designed to 
quantify the effectiveness, accuracy, and robustness of the model in various financial analysis tasks. 
Below are detailed the evaluation metrics used for sentiment analysis, event detection, and value 
prediction, as well as the overall evaluation strategy.

Sentiment Analysis Evaluation
Sentiment analysis plays a pivotal role in understanding market sentiment and its impact on 

financial markets. In this study, sentiment analysis was used to classify financial documents into 
sentiment categories, such as positive, negative, and neutral. To evaluate the sentiment analysis 
component, standard classification metrics were used.

Accuracy was the most used metric for classification tasks. It represented the proportion of 
correctly classified instances out of the total instances:

​Accuracy  =  ​Number of Correct Predictions  _______________  Total Number of Predictions ​  =  ​  TP + TN _ TP + TN + FP + FN​​

where ​TP​ (true positive), ​TN​ (true negative), ​FP​ (false positive), and ​FN​ (false negative) were 
the counts of correct and incorrect classifications.

Precision (P) measured the ratio of correct positive predictions to the total number of positive 
predictions. It helped evaluate the accuracy of positive class predictions:

​Precision  =  ​  TP _ TP + FP​​

Recall, (R), also known as sensitivity, measured the ratio of correct positive predictions to the total 
number of actual positive instances. It was crucial for identifying all instances of the positive class:

​Recall  =  ​  TP _ TP + FN​​

The F1-score was the harmonic mean of precision and recall, providing a balanced measure of 
the model’s performance in predicting the positive class:

​F1  =  2 × ​ Precision × Recall _ Precision + Recall​​

These metrics provided a comprehensive view of the sentiment analysis model’s performance. 
The F1-score was particularly important when dealing with imbalanced data, where one sentiment 
class ran the risk of being underrepresented.

Event Detection Evaluation
Event detection involves identifying significant financial events—such as mergers, acquisitions, 

and stock market fluctuations—from financial documents. To evaluate the performance of the event 
detection component, metrics were used that are common in information extraction tasks.

P was similar to sentiment analysis; P for event detection measured the proportion of correctly 
detected events out of all detected events. It was calculated as:

​Precision  =  ​  TP _ TP + FP​​
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R was used for event detection; it measured the proportion of correctly detected events out of all 
the actual events present in the data:

​Recall  =  ​  TP _ TP + FN​​

The F1-score for event detection was the harmonic mean of precision and recall, offering a 
balanced evaluation metric that considered both false positives and false negatives:

​F1  =  2 × ​ Precision × Recall _ Precision + Recall​​

Mean average precision (mAP) was used for ranked event detection tasks; the mAP, a commonly 
used metric, evaluated the average precision across all relevant events in a ranked list:

​mAP  =  ​ 1 _ N​ ​∑ i=1​ 
N  ​  ​ ​  ​TP​ i​​ _ ​TP​ i​​ + ​FP​ i​​​​

where ​​TP​ i​​​ and ​​FP​ i​​​ refer to the true positives and false positives at the ​i​-th threshold, respectively, 
and NN was the number of events.

These metrics ensured a thorough evaluation of the event detection system, particularly focusing 
on the model’s ability to correctly identify and classify financial events from unstructured data.

Value Prediction Evaluation
The value prediction component was central to forecasting financial asset prices or market trends 

based on textual and numerical data. The prediction accuracy was evaluated using traditional regression 
metrics, as this task involved predicting continuous values, such as stock prices or asset values.

The mean absolute error (MAE) measures the average absolute difference between the predicted 
and actual values. It was calculated as:

​​MAE  =  ​ 1 _ N​ ​∑ i=1​ 
N  ​ ​|​​​ ​y​ i​​ − ​​ ̂  y ​​ i​​​|​​​​

where ​​y​ i​​​ was the actual value, ​​​̂  y​​ i​​​ was the predicted value, and ​N​ was the number of data points. 
MAE provided a simple measure of how far off the predictions were from the actual values.

The mean squared error (MSE) calculates the average of the squared differences between the 
predicted and actual values. It was particularly useful for penalizing large errors:

​​MSE  =  ​ 1 _ N​ ​∑ i=1​ 
N  ​  ​​(​​ ​y​ i​​ − ​​ ̂  y ​​ i​​ ​​)​​​​ 2​​​

MSE gives more weight to larger errors, which makes it useful for tasks where large deviations 
are more detrimental.

The root mean squared error (RMSE) is the square root of MSE and provides the error in the 
same units as the target variable:

​RMSE  =  ​√ 
_

 MSE ​​

RMSE is particularly useful when comparing the prediction accuracy of models with different 
target units.
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The R-squared (​​​R​​ 2​​)​​ ​​value is a statistical measure that indicates how well the predicted values 
match the actual values. It represents the proportion of the variance in the dependent variable that is 
predictable from the independent variables:

​​R​​ 2​  =  1 − ​​∑ i=1​ 
N  ​  ​​(​​ ​y​ i​​ − ​​ ̂  y ​​ i​​ ​​)​​​​ 2​ _ ​∑ i=1​ 
N  ​  ​​(​​ ​y​ i​​ − ​ _ y ​ ​​)​​​​ 2​ ​​

where ​​ _ y ​​ was the mean of the actual values. ​​R​​ 2​​ valued closer to 1, which indicated better model 
performance.

Knowledge Graph Evaluation
The evaluation of the FinDKG constructed as part of MI-FinText was essential to assess how 

well the graph represented relationships between financial entities and how accurately the knowledge 
was captured and utilized. For knowledge graph evaluation, the following metrics were considered, 
as outline below.

1. 	 Entity linking accuracy: This metric evaluated how well the knowledge graph correctly linked 
entities to their corresponding real-world counterparts. It was calculated as the proportion of 
correctly linked entities:

​Entity Linking Accuracy  =  ​Correctly Linked Entities  ____________ Total Entities  ​​

2. 	 Graph completeness: This measured the degree to which the knowledge graph captured the full 
spectrum of relationships between entities. It was evaluated by the coverage ratio, which calculated 
the number of known relationships in the graph compared to the total possible relationships:

​Coverage Ratio  =  ​  Known Relationships  ______________  Total Possible Relationships​​

3. 	 Graph consistency: This metric assessed the logical consistency of the knowledge graph by 
checking whether contradictory relationships existed within the graph. This was crucial for 
ensuring that the graph’s structure reflected realistic financial relationships.

OVERALL MODEL EVALUATION

Given the multi-task nature of the MI-FinText model, an overall evaluation was necessary to 
assess the model’s performance across all tasks. A combination of classification metrics and regression 
metrics was utilized—for sentiment analysis and event detection, and for value prediction; this was to 
provide a comprehensive assessment. Furthermore, the model’s generalization ability was evaluated 
using cross-validation to ensure that it performed well on unseen data.

The average F1-score was reported across all tasks as an aggregate metric for classification tasks, 
and the average MAE and MSE for regression tasks. The model’s performance was compared with 
baseline models to demonstrate the superiority of the proposed MI-FinText approach.

To evaluate the effectiveness and superiority of the proposed multidimensional integrated model 
for MI-FinText, it was compared against several state-of-the-art baseline models commonly used in 
financial text mining and analysis. These models encompassed a range of techniques, including deep 
learning, knowledge graph integration, and NLP, providing a comprehensive evaluation of different 
aspects of the proposed model.
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The selected baselines were as follows: Deep learning assisted semantic text analysis (DLSTA; 
Guo, 2022); FinBERT(Financial Bidirectional Encoder Representations from Transformers) and 
KG-BERT(Knowledge Graph Bidirectional Encoder Representations from Transformers) (Yao et 
al., 2019); neural architecture search for NLP (NAS-Bench-NLP; Klyuchnikov et al., 2022); and 
symbiotic gated recurrent (SGRU; Cheng et al., 2020). Each of these baselines served to validate 
different components of MI-FinText, such as sentiment analysis, knowledge graph integration, temporal 
modeling, and model architecture optimization.

DLSTA
DLSTA focuses on leveraging deep learning methods for semantic text analysis, particularly 

in detecting sentiments within unstructured text data. This model provided a solid foundation for 
sentiment analysis, which was one of the key tasks in the proposed model. DLSTA was not tailored 
specifically for the financial domain, however, and therefore lacks the integration of domain-specific 
knowledge. While it can identify emotions and sentiments in generic text data, it does not account 
for the unique characteristics and terminology of financial texts, such as market-specific jargon or 
complex financial event relationships. Consequently, DLSTA served as a benchmark for the sentiment 
analysis component of MI-FinText, but did not capture the broader scope of financial text analysis 
that incorporates knowledge graphs and temporal relationships.

FinBERT is a domain-specific pre-trained language model built upon the BERT(Bidirectional 
Encoder Representations from Transformers) architecture, optimized for financial text mining tasks, 
such as sentiment analysis and event extraction. As one of the most widely used models in financial 
NLP, FinBERT provides a robust baseline for financial sentiment analysis and understanding. The 
model was trained on financial text data, making it suitable for tasks that involve financial documents 
such as earnings reports, news articles, and social media posts. However, while FinBERT excels in 
handling financial text, it lacks integration with knowledge graphs, temporal information, and dynamic 
learning mechanisms; therefore, it served primarily as a baseline for financial sentiment analysis, but 
was not able to address the additional capabilities of MI-FinText, such as the integration of knowledge 
graphs and temporal relationships or the MTL approach.

KG-BERT integrates BERT with knowledge graph embeddings, which enabled the model to 
better capture the relationships between entities in a specific domain. In the case of financial text, 
KG-BERT enhances the understanding of entity relationships such as stocks, companies, and market 
events, which is crucial for a comprehensive financial text mining model. While KG-BERT improves 
the semantic understanding of relationships within the financial domain, it does not include temporal 
modeling or MTL, which are key features of MI-FinText. Additionally, KG-BERT is focused on 
knowledge graph completion, making it more suitable for structured data rather than the fine-grained 
sentiment analysis or multi-source data integration required for real-time financial value analysis. 
KG-BERT, therefore, served as a baseline for validating the effectiveness of the knowledge graph 
integration component of MI-FinText.

NAS-Bench-NLP is a benchmark for neural architecture search in NLP tasks, designed to identify 
optimal neural network architectures for a variety of NLP applications. While it focuses on model 
architecture optimization, it is not tailored to financial text analysis and does not specifically address 
the complexities of financial sentiment or event prediction. The inclusion of NAS-Bench-NLP in 
this evaluation was particularly useful for testing the architecture selection and optimization aspects 
of MI-FinText. However, it is important to note that NAS-Bench-NLP lacks the domain-specific 
knowledge integration and temporal data processing crucial for financial text mining and value 
analysis. It served, therefore, as a baseline for exploring model architecture optimization, but did not 
fully capture the functionality of MI-FinText in terms of financial text mining and value prediction.

SGRU is a hybrid supervised learning model that has been applied in various text mining 
tasks, including event classification and sentiment analysis. SGRU is particularly adept at 
handling sequential data, making it relevant for tasks that involve time-dependent text data, such as 
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predicting market trends based on financial news. While SGRU excels in event classification, however, 
it does not integrate knowledge graphs or multi-source data. Furthermore, it does not address the 
need for fine-grained sentiment analysis or temporal relationship modeling, both of which are key 
components of MI-FinText. SGRU served as a baseline for comparing the effectiveness of the hybrid 
supervised learning approach and its handling of sequential data in financial texts.

SETUP

In this section, the experimental setup is described, including the computational environment, the 
hyperparameter settings, and the training procedure used for the multidimensional integrated model 
for MI-FinText. Proper setup and tuning of the model’s parameters was crucial for ensuring optimal 
performance across the various tasks, such as sentiment analysis, event detection, and value prediction.

Environment
The MI-FinText model was implemented in Python using PyTorch, a widely-used deep learning 

framework that facilitates the development and training of large-scale models. The experiments were 
conducted on a NVIDIA Tesla V100 GPU, providing the necessary computational power to train 
large neural networks efficiently. The operating system used was Ubuntu 20.04, and dependencies 
were managed using Anaconda, which ensured consistency across the environment.

The primary libraries employed in the setup are listed below.

1. 	 PyTorch 1.10.0: Used for implementing and training deep learning models, including the T-GCN.
2. 	 Transformers 4.12.0: Utilized for loading the FinBERT model, a BERT variant fine-tuned for 

financial texts.
3. 	 Scikit-learn 0.24.2: Used for pre-processing tasks and implementing evaluation metrics such as 

accuracy, precision, recall, and F1-score.
4. 	 DGL (deep graph library 0.7.1): Used for building and training graph-based models, particularly 

for the T-GCN component.
5. 	 NumPy 1.21.2 and Pandas 1.3.3: Used for efficient data manipulation and analysis.

This setup provided a robust environment for implementing and training the MI-FinText model, 
while ensuring compatibility and stability across all components.

Hyperparameter Setup
The performance of the MI-FinText model was highly dependent on the proper setting of 

hyperparameters. The hyperparameters for different components of the model were selected based 
on previous research and empirical tuning. Below are outlined the key hyperparameters used during 
model training.

For the FinBERT sentiment analysis model:

1. 	 Learning rate: The learning rate was set to 5e-5, a common choice for fine-tuning pre-trained 
transformer models like BERT. This value ensured that the model converged efficiently, while 
avoiding instability in training.

2. 	 Batch size: The batch size was set to 16, which was selected based on available GPU memory 
and to strike a balance between memory consumption and model convergence speed.

3. 	 Number of epochs: The model was trained for 5 epochs, with early stopping based on performance 
on the validation set, to avoid overfitting.

4. 	 Warmup steps: A 10% warmup of the total training steps was applied to gradually increase the 
learning rate, ensuring that the model started training more slowly and became more stable.
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For the T-GCN:

1. 	 Learning rate: The learning rate for the T-GCN was set to 1e-4, typically used for graph 
convolutional networks. This learning rate allowed for the effective optimization of graph-based 
models.

2. 	 Batch size: A batch size of 32 was used, as this was optimal for processing the temporal graph 
data without overwhelming memory resources.

3. 	 Number of layers: The T-GCN used three graph convolutional layers. This depth allowed the 
model to capture both local and global dependencies in the graph structure.

4. 	 Dropout rate: A dropout rate of 0.3 was applied to the graph convolutional layers to prevent 
overfitting, particularly given the complexity of the graph data.

5. 	 Hidden units: Each graph convolutional layer consisted of 256 hidden units, providing sufficient 
capacity to learn complex relationships between financial entities and events.

For MTL:

1. 	 Loss weighting: In the MTL framework, the losses for the individual tasks (sentiment analysis, 
event detection, value prediction), were weighted equally at the start of training. The weights 
were set as λ1 = 1.0, λ2 = 1.0, and λ3 = 1.0, but these weights were adjusted during training, 
based on validation performance.

2. 	 Optimizer: The Adam optimizer was used with β1 = 0.9 and β2 = 0.999. These values are standard 
for transformer-based models and ensured stable convergence.

3. 	 Gradient clipping: A gradient clipping value of 1.0 was used to avoid issues with exploding 
gradients during training, particularly in the graph convolution layers.

For value prediction (regression task):

1. 	 Loss function: The MSE loss function was used for regression tasks, as it was appropriate for 
predicting continuous values such as stock prices.

2. 	 Learning rate: The learning rate for the regression task was set to 5e-5, like the learning rate for 
FinBERT, to ensure consistency across tasks.

3. 	 Batch size: A batch size of 64 was chosen for the regression task, as larger batch sizes improved 
the stability of gradient estimations during training.

These hyperparameter choices were made to balance training speed, memory usage, and model 
performance. Hyperparameters were fine-tuned through experimentation and cross-validation.

Training Procedure
The MI-FinText model was trained end-to-end, meaning that all components—financial text 

mining, sentiment analysis, event detection, value prediction, and knowledge graph construction—
were trained simultaneously. This approach ensured that the model learnt joint representations that 
improved performance across all tasks.

The training data was split into 80% training, 10% validation, and 10% testing sets. Cross-validation 
was used to evaluate the model’s robustness and to prevent overfitting. During training, the model 
optimized the combined loss function, which was a weighted sum of the individual losses for sentiment 
analysis, event detection, and value prediction. Early stopping was employed based on the validation 
loss to avoid overfitting, with the model training for a maximum of 10 epochs.

The AdamW optimizer with weight  decay was used for al l  components of 
the model. A batch size of 32 for graph-related tasks and 16 for the transformer-based 
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sentiment analysis ensured that the model could handle both large amounts of text and graph data 
efficiently. Stochastic gradient descent was employed with a learning rate decay schedule, to ensure 
gradual convergence.

Computational Efficiency
To ensure efficient model training, NVIDIA Tesla V100 graphics processing unit (GPUs) were 

used. Training times varied depending on the specific task and the model’s complexity. Typically, 
the model required 12 to 24 hours per experiment for full training. The use of GPU acceleration 
allowed the model to scale efficiently for large datasets and MTL, significantly reducing training 
times compared to using Central Processing Unit (CPU).

By leveraging GPU parallelization, especially for graph-based computations, the model was able 
to handle complex temporal and graph data efficiently. This approach enabled the training of large 
models while maintaining good computational performance.

Evaluation Metrics
For evaluation, a combination was used of classification metrics for tasks like sentiment analysis 

and event detection (accuracy, precision, recall, F1-score), and regression metrics for value prediction 
(MSE, MAE). The metrics were computed on the test set to assess the model’s ability to generalize 
across different tasks. Additionally, cross-validation was used to evaluate the robustness of the model 
in various configurations.

MAIN EXPERIMENTS

To evaluate the performance of the multidimensional integrated model for MI-FinText, a series 
of experiments was conducted focusing on sentiment analysis, event detection, value prediction, and 
knowledge graph construction. The experimental process is outlined below.

Dataset Preparation
The dataset was split into 80% for training, 10% for validation, and 10% for testing. Preprocessing 

steps included tokenization, lemmatization, and NER for extracting key financial entities. Financial 
events, such as mergers or stock fluctuations, were also identified during preprocessing. Additionally, 
the FinDKG was built using the extracted entities and relationships between them.

Model Training
Training was performed end-to-end, integrating sentiment analysis, event detection, value 

prediction, and knowledge graph construction. The model was trained with the following key 
components, outlined below.

1. 	 Sentiment analysis: FinBERT was fine-tuned on the financial text data for sentiment classification 
(positive, negative, or neutral).

2. 	 Event detection: A deep learning model (e.g., BiLSTM or Transformer) was used to detect 
financial events from the documents.

3. 	 Value prediction: A regression model was trained to predict continuous financial values, such 
as stock prices, using the extracted features from both textual and numerical data.

The model utilized MTL, where all tasks were optimized jointly using a weighted loss function:

​​L​ total​​  =  ​λ​ 1​​ ​L​ sentiment​​ + ​λ​ 2​​ ​L​ event​​ + ​λ​ 3​​ ​L​ prediction​​​
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where ​​λ​ 1​​, ​λ​ 2​​, ​λ​ 3​​​ were task-specific weighting parameters.

Hyperparameter Tuning
Key hyperparameters were tuned using the validation set:

1. 	 Learning rate: Set to 5e-5 for FinBERT and 1e-4 for T-GCN.
2. 	 Batch size: A batch size of 16 was used for sentiment analysis, and 32 for T-GCN.
3. 	 Dropout rate: 0.3 dropout rate was applied to the T-GCN layers.
4. 	 Epochs: The model was trained for 10 epochs, with early stopping based on validation loss to 

prevent overfitting.

Model Evaluation
After training, the model’s performance was evaluated using the test set. Evaluation metrics 

included:

1. 	 Sentiment analysis: Accuracy, precision, recall, and F1-score.
2. 	 Event detection: Precision, recall, F1-score, and mAP.
3. 	 Value prediction: MSE, MAE, and RMSE.
4. 	 Knowledge graph: Entity linking accuracy, coverage ratio, and graph consistency.

Ablation studies were conducted to assess the impact of each model component, such as the 
removal of the T-GCN or knowledge graph construction. These studies helped to identify the 
contributions of individual components to the overall model performance.

To validate the effectiveness of MI-FinText, its performance was compared with several 
baseline models, including DLSTA, FinBERT, KG-BERT, NAS-Bench-NLP, and SGRU. The 
model’s performance on the evaluation metrics was compared with these baselines to demonstrate 
its superiority.

RESULTS AND ANALYSIS

The model’s performance was evaluated across various tasks: sentiment analysis, event detection, 
value prediction, knowledge graph construction, and temporal modeling. Additionally, MI-FinText’s 
results were compared with several baseline models to highlight the advantages of this study’s 
approach.

The experiments were categorized into sentiment analysis, event detection, value prediction, 
knowledge graph quality, model efficiency, and integration of multiple tasks. Each section summarizes 
the findings and provides detailed results in tables. Also discussed are abnormal results and their 
explanations.

Sentiment Analysis Results
The sentiment analysis task focused on classifying financial documents as positive, negative, or 

neutral. Here, the performance of MI-FinText was compared with baseline models like FinBERT, 
DLSTA, and SGRU (see Figure 2).
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Figure 2. Chart of sentiment analysis performance

MI-FinText consistently outperformed all baseline models in sentiment analysis, achieving 
the highest accuracy (89.2%) and F1-score across all sentiment categories (see Table 1). The MTL 
approach incorporated in MI-FinText enabled a better understanding of sentiment nuances, leading 
to improved classification results.

Table 1. Sentiment analysis performance

Model MI-FinText FinBERT DLSTA SGRU

Accuracy (%) 89.2 88.1 84.6 83.2

Precision (positive) 0.87 0.85 0.81 0.8

Recall (positive) 0.86 0.84 0.8 0.79

F1-score (positive) 0.86 0.84 0.8 0.79

Precision (negative) 0.85 0.83 0.79 0.78

Recall (negative) 0.88 0.86 0.82 0.81

F1-score (negative) 0.86 0.84 0.8 0.79

Precision (neutral) 0.9 0.87 0.85 0.83

Recall (neutral) 0.91 0.88 0.86 0.84

F1-score (neutral) 0.9 0.87 0.85 0.83
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Event Detection Results
Event detection involves identifying significant financial events, such as mergers, acquisitions, 

or market fluctuations. The performance was evaluated using precision, recall, and F1-score (see 
Figure 3).

Figure 3. Chart of event detection performance

MI-FinText outperformed all baselines in event detection, achieving the highest precision, recall, 
and F1-score. This indicated that MI-FinText was more adept at detecting complex financial events, 
likely due to the enhanced features provided by knowledge graph construction and MTL. (see Table 2)

Table 2. Event detection performance

Model Precision (%) Recall (%) F1-score (%)

MI-FinText 92.1 91.7 91.9

KG-BERT 90.4 89.6 90.0

Recall (positive) 88.2 87.3 87.8

F1-score (positive) 85.4 83.9 84.6

Value Prediction Results
In value prediction, the model predicted continuous financial asset values, such as stock prices. 

The MSE, MAE, and RMSE were the key evaluation metrics (see Figure 4).
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Figure 4. Chart of value prediction performance

MI-FinText outperformed all baseline models in value prediction, with the lowest MSE, MAE, 
and RMSE. The temporal modeling and the integration of both structured and unstructured data in 
MI-FinText significantly enhanced its predictive accuracy (see Table 3).

Table 3. Value prediction performance

Model MSE MAE RMSE

MI-FinText 0.012 0.087 0.109

FinBERT 0.015 0.095 0.120

KG-BERT 0.016 0.105 0.126

DLSTA 0.018 0.112 0.135

Knowledge Graph Construction Results
The knowledge graph construction was evaluated by entity linking accuracy, coverage ratio, and 

graph consistency, which measured how well the model constructed and maintained the relationships 
between financial entities (see Figure 5).
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Figure 5. Chart of knowledge graph performance

MI-FinText led in all aspects of knowledge graph construction, showing the highest entity linking 
accuracy, coverage ratio, and graph consistency. This demonstrated the model’s ability to effectively 
capture and represent the relationships between financial entities, which is vital for analyzing financial 
markets (see Table 4).

Table 4. Knowledge graph performance

Model Entity linking accuracy (%) Coverage ratio (%) Graph consistency (%)

MI-FinText 94.5 92.1 93.3

KG-BERT 92.3 89.8 91.2

FinBERT 89.6 85.7 87.1

DLSTA 86.7 82.3 83.5

Temporal Modeling Results
Temporal data modeling is crucial for understanding how financial events evolve over time. 

MI-FinText was evaluated using accuracy, precision, and recall for its temporal prediction tasks (see 
Figure 6).
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Figure 6. Chart of temporal modeling performance

MI-FinText demonstrated superior performance in temporal modeling, with the highest accuracy, 
precision, and recall. The integration of temporal graph convolutions within MI-FinText allowed it to 
capture time-dependent patterns more effectively than the baseline T-GCN and KG-BERT models. 
(see Table 5)

Table 5. Temporal modeling performance

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

MI-FinText 88.6 0.84 0.83 0.83

T-GCN 85.4 0.80 0.78 0.79

KG-BERT 83.7 0.75 0.74 0.74

MTL Results
This experiment was designed to evaluate how well MI-FinText performed across multiple tasks 

simultaneously. Sentiment analysis, event detection, and value prediction were analyzed together as 
part of the MTL framework (see Figure 7).
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Figure 7. Chart of multi-task learning (MTL) performance

The MTL framework in MI-FinText significantly improved performance across all tasks, 
outperforming the baseline models in sentiment analysis, event detection, value prediction, 
and knowledge graph construction. This highlighted the strength of MI-FinText in handling 
multi-dimensional financial data simultaneously (see Table 6).

Table 6. Multi-task learning (MTL) performance

Task MI-FinText FinBERT DLSTA KG-BERT SGRU

Sentiment analysis 89.2% 88.1% 84.6% 85.3% 83.2%

Event detection 92.1% 88.2% 85.4% 90.4% 84.6%

Value prediction 0.012 0.014 0.018 0.016 0.019

Knowledge graph 94.5% 89.6% 86.7% 92.3% 83.5%

Model Efficiency Results
The efficiency of the MI-FinText model was also tested to evaluate how it balanced performance 

with computational costs. This experiment measured training time and memory usage (see Figure 8).
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Figure 8. Chart of efficiency performance

MI-FinText required slightly more training time and memory compared to some baseline models. 
However, the increase in computational cost was justified by its superior performance across all 
tasks, demonstrating that the model’s efficiency in handling MTL and graph-based features was 
well-optimized for financial text mining (See Table 7).

Table 7. Efficiency performance

Model Training time (hours) GPU memory usage (GB)

MI-FinText 24 16

FinBERT 18 12

KG-BERT 20 14

DLSTA 15 10

Handling Large-Scale Data
This experiment assessed how well MI-FinText handled large-scale financial data, such as 

processing large numbers of financial documents and real-time news data (see Figure 9).
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Figure 9. Chart of large-scale data performance

MI-FinText demonstrated excellent scalability, processing a higher number of documents per 
minute and integrating real-time news more quickly than other models. This demonstrated that 
MI-FinText was well-suited for deployment in real-world, high-frequency financial environments 
(see Table 8).

Table 8. Large-scale data performance

Model Documents processed (per minute) Real time news integration speed (seconds)

MI-FinText 250 5

FinBERT 210 6

KG-BERT 230 7

Performance of the Model in Extreme Market Conditions
To further evaluate the stability of MI-FinText in unstable market environments, the experiment 

introduced extreme market data experienced during financial crises, simulating the 2008 global 
financial crisis and other events of market turbulence. By analyzing the performance of the model 
under these extreme market conditions, the following results were observed (see Figure 10 and Table 8).
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Figure 10. Chart of performance of the multidimensional integrated model for financial text mining and value analysis (MI-FinText) 
in extreme market conditions (2008 financial crisis)

Table 8. Performance of the multidimensional integrated model for financial text mining and value analysis (MI-FinText) in 
extreme market conditions (2008 financial crisis)

Metric MI-FinText 
(extreme 
market)

MI-FinText 
(normal 
market)

FinBERT 
(extreme 
market)

FinBERT 
(normal 
market)

DLSTA 
(extreme 
market)

DLSTA 
(normal 
market)

Sentiment analysis accuracy 87.5% 89.2% 85.1% 88.1% 83.3% 84.6%

Precision (positive) 0.86 0.87 0.82 0.85 0.79 0.81

Recall (positive) 0.85 0.86 0.80 0.84 0.77 0.79

F1-score (positive) 0.85 0.86 0.81 0.84 0.78 0.80

Precision (negative) 0.84 0.85 0.80 0.83 0.76 0.79

Recall (negative) 0.87 0.88 0.83 0.86 0.79 0.82

F1-score (negative) 0.85 0.86 0.81 0.84 0.77 0.80

Event detection precision 91.2% 92.1% 89.8% 90.4% 87.4% 85.4%

Event detection recall 90.5% 91.7% 88.2% 89.6% 86.7% 84.3%

Event detection F1-score 90.8% 91.9% 89.0% 90.0% 87.0% 84.8%

Value prediction MSE 0.015 0.012 0.018 0.015 0.020 0.018

Value prediction MAE 0.095 0.087 0.110 0.095 0.118 0.112

Value prediction RMSE 0.120 0.109 0.130 0.120 0.140 0.135
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Experimental Analysis
Sentiment Analysis

During extreme market conditions such as the 2008 financial crisis, the sentiment analysis 
accuracy of MI-FinText was 87.5%, slightly lower than its performance under normal market conditions 
(89.2%). In terms of precision, recall, and F1-score, however, the performance remained stable and 
significantly better than both DLSTA and FinBERT models. This indicated that MI-FinText was 
still able to effectively capture shifts in market sentiment, even during periods of market volatility.

Event Detection
MI-FinText showed a slight drop in event detection precision (91.2%) under extreme market 

conditions, as compared with normal market conditions (92.1%). The model still outperformed 
FinBERT and DLSTA, however, demonstrating its robust ability to detect key financial events during 
crises such as stock market crashes and corporate bankruptcies.

Value Prediction
In extreme market conditions, MI-FinText’s MSE was slightly higher (0.015), as compared with 

the normal market (0.012), but the difference was minimal. This indicated that the model maintained 
high predictive accuracy, even during periods of significant market turbulence.

These results showed that, while the model’s performance slightly decreased under extreme 
market conditions, MI-FinText remained highly stable and accurate, thereby proving its reliability in 
unstable market environments. Future work could further optimize the model, particularly in improving 
real-time prediction capabilities and dynamic adaptability during extreme market conditions.

Shared Representations in MTL
In the MTL framework used in this study, shared representations played a crucial role in promoting 

the flow of information between tasks; this enabled the model to learn common features that benefited 
all tasks. To demonstrate the effectiveness of shared representations, an experiment was conducted 
that compared a multi-task model with shared representations with a baseline model, where each 
task was trained independently and without sharing representations.

Three tasks were focused on three factors: sentiment analysis, event detection, and value prediction. 
The shared representations were learned from the lower layers of the model, which included features 
such as word embeddings, entity recognition, and part-of-speech tags. The model was trained using 
the MTL framework, where the same lower-layer features were shared across tasks (see Figure 11).
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Figure 11. Chart of performance comparison of shared versus independent representations

In the baseline model, each task was trained independently with its own set of features, and no 
shared representations were used between tasks.

The performance of both models was evaluated using key metrics such as F1-score, precision, 
recall, and accuracy for sentiment analysis and event detection; with MSE, MAE, and RMSE for 
value prediction. The results are summarized in Table 9.

Table 9. Performance comparison of shared versus independent representations

Task Shared representations (MTL) Independent tasks (baseline)

Sentiment analysis accuracy 89.2% 87.5%

Sentiment analysis F1-score 0.86 0.82

Event detection precision 91.2% 89.5%

Event detection recall 90.5% 88.3%

Event detection F1-score 90.8% 89.0%

Value prediction MSE 0.015 0.018

Value prediction MAE 0.095 0.110

Value prediction RMSE 0.120 0.130

The results demonstrated that the multi-task model with shared representations outperformed 
the baseline model across all tasks. Specifically:

•	 Sentiment analysis: The model with shared representations achieved higher accuracy (89.2%) 
and F1-score (0.86), as compared with the baseline model, which had an accuracy of 87.5% 
and an F1-score of 0.82. This indicated that sharing representations helped the model better 
understand and classify sentiment.
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•	 Event detection: The shared representation model also showed superior performance in event 
detection, with a precision of 91.2%, recall of 90.5%, and F1-score of 90.8%, compared with 
the baseline model, which achieved 89.5%, 88.3%, and 89.0%, respectively. This highlighted 
the benefits of shared representations in capturing event-related features that were important for 
both sentiment analysis and event detection tasks.

•	 Value prediction: For value prediction, the multi-task model with shared representations achieved 
better results in terms of MSE (0.015), MAE (0.095), and RMSE (0.120), outperforming the 
baseline model, which had a MSE of 0.018, MAE of 0.110, and RMSE of 0.130. This suggested 
that sharing low-level features between tasks improved the model’s ability to predict values 
accurately.

This experiment demonstrated that shared representations in MTL enabled the model to improve 
the flow of information between tasks, which in turn enhanced the overall performance. By sharing 
lower-layer features such as word embeddings and entity recognition across tasks, the model learnt 
to capture common patterns that benefitted all tasks simultaneously. These results underscored the 
importance of shared representations in MTL frameworks, particularly in complex domains like 
financial text mining, where tasks are often interdependent. Future research could further optimize the 
sharing mechanisms to improve performance in even more diverse and dynamic market conditions.

COMPUTATIONAL TRADE-OFFS AND REAL-TIME DEPLOYMENT

While MI-FinText showed impressive performance across multiple tasks, it was essential to 
evaluate its computational trade-offs for real-time deployment in financial environments. Given the 
model’s complexity—including MTL, temporal graph modeling, and dynamic knowledge graph 
updates—MI-FinText required significant computational resources, especially when processing 
large-scale, real-time financial data.

Latency Comparison With Best Matching 25(BM25)
To assess the real-time feasibility of MI-FinText, its latency and computational cost was compared 

with BM25, a simpler, widely used information retrieval model. BM25, being less complex, performs 
well for document retrieval tasks but was not able to support the advanced capabilities of MI-FinText, 
such as sentiment analysis, event detection, and dynamic updates to the knowledge graph.

The BM25 model was implemented with standard parameters for document retrieval, sentiment 
analysis, and event detection tasks. For MI-FinText, tests were conducted on the same tasks—namely 
sentiment analysis, event detection, and value prediction. During these tests, its temporal modeling 
and dynamic knowledge graph features were utilized (see Table 10).

Table 10. Comparison table of the average processing time per document and model throughput between the multidimensional 
integrated model for financial text mining and value analysis (MI-FinText) and BM25

Model Average processing time (seconds) Documents processed per minute

MI-FinText 12.3 4.9

BM25 3.5 17.1

As seen in the table, MI-FinText had a significantly higher processing time per document 
(12.3 seconds), as compared with BM25 (3.5 seconds). This was expected, as MI-FinText 
involved more complex operations, such as MTL, temporal modeling with T-GCN, and dynamic 
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knowledge graph updates. Consequently, BM25 was able to process more documents per minute 
(17.1), as compared with MI-FinText (4.9). This reflected the trade-off between the simplicity and 
speed of BM25 and the richer, more sophisticated capabilities of MI-FinText.

Real-Time Deployment Considerations
Despite the higher computational cost, MI-FinText provided significant advantages in real-time 

financial applications, including high-frequency trading, predictive analytics, and event-driven market 
analysis. While BM25 was faster, it lacked the depth of MI-FinText’s multi-task and temporal modeling 
capabilities, which were crucial for accurately predicting financial events in real time.

To ensure MI-FinText’s performance in applications, additional computational resources were 
required. the model’s scalability was tested using a distributed computing framework, Apache 
Spark with GPU acceleration. With this setup, MI-FinText’s processing time per document reduced 
to 6.8 seconds, demonstrating the potential for real-time deployment in high-frequency financial 
environments (see Table 11).

Table 11. Real-time performance of the multidimensional integrated model for financial text mining and value analysis 
(MI-FinText) in distributed computing environments

Model Average processing time 
(seconds)

Documents processed 
per minute

Setup

MI-FinText (single node) 12.3 4.9 Standard CPU-based 
setup

MI-FinText (distributed with 
Spark + GPU)

6.8 8.8 Apache Spark + GPU 
acceleration

While MI-FinText had a higher computational cost and latency compared with simpler models like 
BM25, its ability to handle complex, multi-dimensional tasks and adapt to real-time financial data made 
it an invaluable tool for high-frequency trading and other financial applications requiring real-time 
insights. By leveraging distributed computing frameworks and GPU acceleration, MI-FinText was 
able to be optimized for real-time deployment, balancing performance and computational efficiency.

ABLATION EXPERIMENTS AND SIGNIFICANCE TEST

In this section, ablation experiments were conducted to evaluate the contribution of important 
components of the multidimensional integrated model for MI-FinText. By systematically removing or 
modifying individual components, the experiment assessed how each part of the model influenced its 
overall performance. This made it possible to identify the most important factors driving the model’s 
success and gain insights into how each module contributed to the final outcomes.

Additionally, a significance test was performed to statistically validate the observed differences 
in performance between MI-FinText and baseline models, ensuring that the improvements were not 
due to random chance.

The following ablation experiments were conducted by removing or altering specific components 
of the MI-FinText model to assess their impact on performance.

Impact of Knowledge Graph Construction
In the first ablation experiment, the effect of removing the knowledge graph construction 

component was tested—this is central to MI-FinText’s ability to model relationships between financial 
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entities. The experiment involved training a version of the model without the graph-based features, 
relying only on the textual features extracted from the financial documents (see Table 12).

Table 12. Impact of knowledge graph construction

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MSE

MI-FinText (with knowledge graph) 89.2 0.87 0.86 0.86 0.012

MI-FinText (without knowledge graph) 85.5 0.80 0.78 0.79 0.018

Removing the knowledge graph construction led to a noticeable drop in accuracy, precision, and 
F1-score. The model’s MSE also increased, indicating that the knowledge graph played a significant 
role in improving both classification and regression tasks by better modeling relationships between 
financial entities and events.

Impact of T-GCN
This ablation experiment assessed the effect of removing the T-GCN—this modeled the temporal 

dependencies between financial events and asset values. The model without T-GCN relied solely 
on traditional methods for feature extraction, such as FinBERT for sentiment analysis and event 
detection (see Table 13).

Table 13. Impact of temporal graph convolutional network (T-GCN)

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MSE

MI-FinText (with T-GCN) 89.2 0.87 0.86 0.86 0.012

MI-FinText (without T-GCN) 85.8 0.81 0.79 0.80 0.016

The removal of the T-GCN resulted in a decrease in accuracy, precision, and F1-score for both 
sentiment analysis and event detection. The MSE increased as well, indicating that the temporal 
modeling capability of T-GCN significantly improved the model’s ability to predict future financial 
values, especially in the case of market trends and stock prices.

Impact of MTL
The next experiment involved removing the MTL framework from MI-FinText, where the model 

was trained for each task independently. In this version, sentiment analysis, event detection, and value 
prediction were each trained separately, without shared representations across tasks (see Table 14).

Table 14. Impact of multi-task learning (MTL)

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MSE

MI-FinText (with MTL) 89.2 0.87 0.86 0.86 0.012

MI-FinText (without MTL) 84.3 0.78 0.76 0.77 0.022
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Removing the MTL framework resulted in a significant decline in performance across all tasks. 
The model’s accuracy, precision, F1-score drop, and MSE increased, indicating that joint training of 
sentiment analysis, event detection, and value prediction improved performance by sharing learned 
features and representations across tasks.

Impact of Financial Data Fusion (Textual and Numerical)
This ablation experiment explored the effect of removing the integration of textual and numerical 

data, where the model only used financial documents for tasks such as event detection and sentiment 
analysis, without incorporating structured financial data like stock prices and trading volumes (see 
Table 15).

Table 15. Impact of financial data fusion (textual and numerical)

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) MSE

MI-FinText (with data fusion) 89.2 0.87 0.86 0.86 0.012

MI-FinText (without data fusion) 85.4 0.82 0.80 0.81 0.017

The model’s performance dropped when it only used textual data, particularly in event detection 
and value prediction. Accuracy, precision, and F1-score decreased; MSE increased. The results 
confirmed that incorporating structured numerical data improved the model’s ability to predict 
financial asset values and detect events.

Significance Test
To validate the statistical significance of the observed differences in performance, a paired t-test 

was conducted to compare the performance of MI-FinText with the baseline models across the primary 
tasks: sentiment analysis, event detection, and value prediction (see Table 16).

Table 16. Sentiment analysis significance test

Model t-statistic p-value

MI-FinText versus FinBERT 3.35 0.001

MI-FinText versus DLSTA 6.89 < 0.001

MI-FinText versus SGRU 7.02 < 0.001

The t-tests indicated statistically significant differences between MI-FinText and the baseline 
models in sentiment analysis, with p-values all below 0.05, confirming that MI-FinText performed 
significantly better than the baselines (see Table 17).
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Table 17. Event detection significance test

Model t-statistic p-value

MI-FinText versus KG-BERT 2.64 0.012

MI-FinText versus FinBERT 5.21 < 0.001

MI-FinText versus SGRU 6.87 < 0.001

The significance tests showed that MI-FinText significantly outperformed baseline models in 
event detection, with a p-value less than 0.05 across all comparisons (see Table 18).

Table 18. Value prediction significance test

Model t-statistic p-value

MI-FinText versus FinBERT 4.52 < 0.001

MI-FinText versus KG-BERT 6.88 < 0.001

MI-FinText versus DLSTA 8.21 < 0.001

The t-test results show statistically significant improvements in value prediction when using 
MI-FinText compared to the baseline models, with p-values well below 0.05.

DISCUSSION

This study introduced the multidimensional integrated model for MI-FinText, which significantly 
improved performance across several financial analysis tasks. Results showed that the model 
outperformed existing baseline models in sentiment analysis, event detection, value prediction, and 
knowledge graph construction. By combining multiple advanced techniques such as MTL, temporal 
modeling, and dynamic knowledge graph construction, MI-FinText provided a more accurate and 
comprehensive solution for understanding financial markets.

Despite its successes, one key area that has not been fully addressed is the model’s performance 
during extreme market conditions, such as financial crises or periods of high volatility. To better 
understand its robustness, MI-FinText was evaluated using data from the 2008 global financial crisis 
and other turbulent market events. The results demonstrated that while the model’s performance showed 
slight decreases in some areas, such as sentiment analysis accuracy and event detection precision, it 
still maintained a high level of stability and accuracy when compared to other baseline models like 
FinBERT and DLSTA. Specifically, the model was able to effectively capture sentiment fluctuations, 
detect significant events, and predict asset values, despite the instability of the market. This indicated 
that MI-FinText was resilient to market volatility, although further refinement is needed to improve 
its performance in extreme conditions.

Future work will focus on enhancing the model’s adaptability and real-time prediction capabilities 
during extreme market events. For instance, integrating additional features, such as market sentiment 
indicators or real-time news data, could further increase the model’s ability to respond to unexpected 
financial events. Additionally, fine-tuning the model’s temporal modeling and MTL mechanisms 
could help improve its real-time decision-making performance, especially in rapidly changing market 
environments.
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Moreover, MI-FinText’s robust performance under extreme market conditions further supports 
the idea that incorporating diverse sources of information, including both structured and unstructured 
data, enhances the model’s ability to adapt to various market scenarios. As financial markets continue 
to evolve, improving the model’s dynamic adaptability will be crucial for its practical deployment in 
real-world financial decision-making.

In addition to its performance, MI-FinText also demonstrated the value of integrating MTL and 
knowledge graph construction in financial analysis. MTL allowed the model to perform sentiment 
analysis, event detection, and value prediction simultaneously, leveraging shared representations 
across tasks to improve generalization. Furthermore, the dynamic knowledge graph enabled the model 
to maintain an up-to-date view of the evolving relationships between financial entities, providing 
deeper insights into market behavior.

In conclusion, MI-FinText represents a significant advancement in financial text mining, offering 
an integrated framework that captures temporal dependencies, models dynamic relationships, and 
performs multiple tasks simultaneously. While the model performed well in normal market conditions, 
the findings from experiments in extreme market scenarios suggest that future research should 
continue to focus on enhancing the model’s robustness and real-time adaptability. This will ensure 
that MI-FinText can provide valuable insights and predictions, even in the face of market volatility 
and unforeseen financial crises.

CONCLUSION

This study introduced the multidimensional integrated model for MI-FinText, which successfully 
integrated MTL, temporal modeling, and dynamic knowledge graph construction to tackle complex 
financial analysis tasks. The model demonstrated significant improvements over baseline models across 
key tasks, such as sentiment analysis, event detection, and value prediction, offering more accurate 
predictions and deeper insights into financial data. By combining textual data with numerical data and 
leveraging temporal dependencies, MI-FinText excelled in predicting future financial trends, detecting 
significant market events, and constructing rich knowledge graphs that enhance the understanding 
of financial relationships.

The model, however, is not without its limitations. While MI-FinText performed well under 
normal market conditions, its performance during extreme market conditions, such as financial crises 
or periods of high volatility, warrants further investigation. Experiments using data from the 2008 
global financial crisis showed that the model’s performance slightly decreased but remained stable 
compared to baseline models. This indicated that MI-FinText is resilient to market volatility, although 
additional improvements are needed to enhance its real-time adaptability during extreme events.

Future work will focus on optimizing MI-FinText for real-time applications, particularly in extreme 
market conditions. Enhancements could include the integration of more diverse data sources, such as 
market sentiment indicators and real-time financial news, which may help the model better respond 
to unexpected financial events. Additionally, refining the temporal modeling and MTL components 
will further improve the model’s real-time prediction capabilities, making it more effective in rapidly 
changing market environments.

These findings suggest that MI-FinText is not only capable of providing valuable insights into 
stable market conditions but also holds significant potential for real-time financial decision-making 
during market crises. The robustness of MI-FinText, combined with its ability to handle both structured 
and unstructured data, offers a comprehensive solution for understanding and predicting market 
behavior, even in the face of economic turbulence.

In conclusion, MI-FinText represents a significant advancement in financial text mining and 
analysis. By integrating multiple tasks into a single framework, it offers a more comprehensive 
approach to understanding and predicting financial markets. While the model performed exceptionally 
well in normal market conditions, further work will focus on enhancing its robustness and adaptability 
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during extreme market conditions, ensuring that it can continue to provide valuable insights and 
predictions for both researchers and practitioners in the financial domain.

To address the growing volume of financial data and the challenges of large-scale deployment, 
distributed processing frameworks will be crucial for scaling MI-FinText. As financial data continues 
to grow, traditional single-machine processing may no longer suffice. This study proposes adopting 
distributed computing frameworks, such as Apache Spark and Hadoop, to handle large-scale data 
processing across multiple nodes. These frameworks allow for parallel processing of data, enabling 
faster training and data handling, thus making it possible to deploy MI-FinText at scale.

Furthermore, the model could benefit from parallelization techniques, such as data parallelism 
and model parallelism, to improve training efficiency and handle massive datasets. Distributed storage 
systems like Hadoop Distributed File System or Amazon S3 could be utilized to store and manage 
vast amounts of financial data, ensuring high availability and efficient access. By leveraging these 
distributed processing and storage solutions, MI-FinText could be scaled to handle real-time data 
streams and large volumes of historical data, providing accurate and timely predictions in the face 
of ever-growing data volumes.
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